基于改进Mask-Scoring R-CNN的肌纤维自动分割与表型计算方法研究
CSTR:
作者:
作者单位:

1.华南农业大学数学与信息学院,广州 510642;2.国家生猪种业工程技术研究中心,广州 510642;3.猪禽种业全国重点实验室,广州 510640;4.华南农业大学动物科学学院,广州 510642

作者简介:

通讯作者:

尹令,E-mail:yin_ling@scau.edu.cn

中图分类号:

TP391

基金项目:

国家自然科学基金项目(32172780);国家重点研发项目(2023YFD1300202)沃靖杰,E-mail:823549589@qq.com


Automatic segmentation of muscle fiber and methods of calculating phenotype based on improved Mask-Scoring R-CNN
Author:
Affiliation:

1.College of Mathematics and Informatics,South China Agricultural University,Guangzhou 510642,China;2.National Engineering Research Center for Swine Breeding Industry,Guangzhou 510642,China;3.State Key Laboratory of Swine and Poultry Breeding Industry,Guangzhou 510640,China;4.College of Animal Science,South China Agricultural University,Guangzhou 510642,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决人工手动分割与半自动分割的精度及效率问题以及通用分割模型在面对各种噪声干扰时的表现不足,提出改进Mask-Scoring R-CNN的实例分割模型,实现对肌纤维细胞的高效分割。在Mask-Scoring R-CNN模型中引入CBAM(convolutional block attention module)注意力机制,并对其进行改进,强化模型对特征信息的提取与表达,从而提升分割效果与模型在肌纤维分割任务中的泛化能力。改进Mask-Scoring R-CNN模型在103张测试集的测试结果显示,表型数据测定值的均方根误差均比原模型更小,肌纤维总数均方根误差从2.08降至1.26,面积均方根误差从212.21 μm2降低至181.36 μm2,平均直径均方根误差从2.87 μm降低至1.47 μm。试验结果表明改进后的模型能有效应对含噪声的肌纤维图像,在常见的噪声环境下依然能够准确分割出每个肌纤维。

    Abstract:

    A model for instance segmentation based on improved Mask-Scoring R-CNN was proposed and the efficient segmentation of myofibroblast cells was realized to solve the problems of manual and semi-automatic segmentation with accuracy and efficiency and the inadequate performance of general models for segmentation in encountering various interferences of noisy images.The Convolutional Block Attention Module (CBAM) attention mechanism was introduced into the Mask-Scoring R-CNN model to improve the model.The extraction and expression of feature information by the improved model was enhanced to improve the performance of segmentation and the generalization capability of the model in tasks of segmentation.The results of testing the improved Mask-Scoring R-CNN model on a dataset of 103 test images showed that the root mean square error (RMSE) of phenotype measurement value was smaller than that of the original model,with the RMSE of the total number of myofibers decreased from 2.08 to 1.26,the RMSE of area reduced from 212.21 μm2 to 181.36 μm2,and the RMSE of average diameter decreased from 2.87 μm to 1.47 μm.It is indicated that the improved model can effectively deal with noisy images of myofiber and accurately segment each myofiber even in common noisy environments.

    参考文献
    相似文献
    引证文献
引用本文

沃靖杰,田绪红,尹令,杨杰,姚泽锴,蔡更元.基于改进Mask-Scoring R-CNN的肌纤维自动分割与表型计算方法研究[J].华中农业大学学报,2025,44(2):134-144

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-02
  • 出版日期:
文章二维码