EMD-YOLO:基于YOLOv8n改进的轻量化作物叶部病害检测算法
CSTR:
作者:
作者单位:

河南农业大学信息与管理科学学院,郑州 450046

作者简介:

王斌兵,E-mail:wangbinbing@stu.henau.edu.cn

通讯作者:

尹飞,E-mail:yin.fei@henau.edu.cn

中图分类号:

S432;TP391.41

基金项目:

河南省科技攻关项目(242102521027);河南省科技研发计划联合基金项目(222301420113)


EMD-YOLO: an improved lightweight algorithm for detecting diseases in crop leaf based on YOLOv8n
Author:
Affiliation:

College of Information & Management Sciences, Henan Agricultural University, Zhengzhou 450046, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为准确、快速地识别作物叶部病害,降低手工诊断成本,减少叶部病害对作物生长过程与产量的危害,提出一种基于YOLOv8n新型轻量级作物叶部病害检测算法EMD-YOLO。该算法结合多尺度空洞注意力MSDA、EffectiveSE注意力机制、DySample上采样以及Wise-IoU损失函数。其中,多尺度空洞注意力MSDA结合多尺度空间卷积与注意力机制,提高多尺度特征提取效率;EffectiveSE强化特征选择,提升模型表示性能;DySample上采样保留重要特征,提高特征图分辨率和检测性能;Wise-IoU损失函数优化交并比(IoU)计算方式,提升模型定位精度。结果显示,EMD-YOLO的精确度、mAP@0.5、模型权重分别为96.3%、92.8%、4.85 MB,较基线模型YOLOv8n的精确度和平均精度均值分别提高3.0和3.6百分点,权重降低1.4 MB。结果表明,EMD-YOLO的泛化性良好,适用于移动端农作物叶部病害检测设备。

    Abstract:

    A novel lightweight algorithm for detecting diseases in crop leaf based on YOLOv8n,EMD-YOLO was proposed to accurately and rapidly identify diseases,reduce costs of manual diagnosis,and minimize the impact of leaf diseases on the production and quality of crops.The algorithm integrated the multi-scale dilated attention (MSDA),EffectiveSE attention mechanism,DySample upsampling,and Wise-IoU loss function.MSDA was combined with multi-scale spatial convolution and attention mechanisms to increase the efficiency of extracting multi-scale feature,while EffectiveSE strengthened the selection of feature and improved the representation performance of model.DySample upsampling preserved important features to enhance the map resolution of feature and the detection performance.Wise-IoU loss function optimized intersection over union (IoU) computation to improve the localization accuracy of model.The results showed that the accuracy,mAP@0.5,and weight of EMD-YOLO was 96.3%,92.8%,and 4.85 MB,respectively.The accuracy and mAP@0.5 of YOLOv8n increased by 3.0 and 3.6 percentage points compared with that of the baseline model YOLOv8n,respectively,while the weight decreased by 1.4 MB.It is indicated that EMD-YOLO has good generalization and is suitable for detecting diseases in crop leaf with mobile devices.

    参考文献
    相似文献
    引证文献
引用本文

王斌兵,张亚利,郑光,时雷,尹飞. EMD-YOLO:基于YOLOv8n改进的轻量化作物叶部病害检测算法[J].华中农业大学学报,2025,44(4):181-191

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-24
  • 出版日期:
文章二维码