基于优化MobileViT模型的轻量化田间杂草识别
CSTR:
作者:
作者单位:

1.昆明理工大学信息工程与自动化学院,昆明 650504;2.昆明理工大学信息化建设管理中心,昆明 650504;3.昆明理工大学-曙光信息产业股份有限公司AI联合研究中心,昆明 650504

作者简介:

李亚,E-mail:59515091@qq.com

通讯作者:

朱贵富,E-mail:zhuguifu@kust.edu.cn

中图分类号:

S451;TP391.41

基金项目:

国家自然科学基金项目(61863016)


Lightweighted identification of weed in field based on optimized MobileViT model
Author:
Affiliation:

1.School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China;2.Information Construction Management Center, Kunming University of Science and Technology, Kunming 650504, China;3.AI Joint Research Center, Kunming University of Science and Technology - Shuguang Information Industry Co., Ltd., Kunming 650504, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对农业环境中杂草与作物幼苗的识别挑战,提出一种基于优化MobileViT模型的轻量化识别方法。首先引入SimAM注意力机制,增强模型对特征的注意力能力,使用SCConv卷积模块减少卷积神经网络中特征的空间和通道冗余来降低计算成本和模型存储,同时提高卷积模块性能;提出联合使用Label Smoothing Loss和Cross Entropy Loss的损失函数策略,提升模型的泛化性能,降低过拟合风险,并加速模型的收敛过程。选取12种田间常见作物幼苗与杂草图像作为训练数据集评估改进模型MobileViT-SS的性能,结果显示,改进模型的平均识别准确率、精确度、召回率、F1分数分别达到95.91%、95.97%、95.46%、95.69%,均优于当前广泛使用的深度神经网络模型VGG-16、ResNet-18和MobileNetv3。结果表明,改进模型MobileViT-SS能够精准、快速区分多种形态相似的杂草与作物幼苗。

    Abstract:

    A lightweighted method based on the optimized MobileViT model was proposed to solve the challenges in identifying weeds from crop seedlings in agricultural environments.SimAM attention mechanism was introduced to enhance the model's ability to pay attention to features.SCConv convolution module was used to reduce the spatial and channel redundancy of features in convolutional neural networks to lower computational costs and model storage, while improving the performance of the convolution module.A loss function strategy combining Label Smoothing Loss and Cross Entropy Loss was proposed to improve the generalization performance of the model, reduce the risk of overfitting, and accelerate the convergence process of the model.Images of 12 common crop seedlings and weeds in the field were used as the training dataset to evaluate the performance of the improved model MobileViT-SS.The results showed that the average recognition accuracy, precision, recall rate, and the F1 score of the improved model reached 95.91%, 95.97%, 95.46%, and 95.69%, respectively, all of which were superior to that in the widely used deep neural network models including VGG-16, ResNet-18, and MobileNetv3.It is indicated that the improved model MobileViT-SS can accurately and quickly distinguish various weeds from crop seedlings with similar morphology.It will provide technical reference for the identification of weeds from crop seedlings with similar morphology.

    参考文献
    相似文献
    引证文献
引用本文

李亚,陈晓东,王海瑞,朱贵富.基于优化MobileViT模型的轻量化田间杂草识别[J].华中农业大学学报,2025,44(4):192-203

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-24
  • 出版日期:
文章二维码