基于EDW-YOLOv8的棉花叶片病害检测
CSTR:
作者:
作者单位:

1.昆明理工大学信息工程与自动化学院,昆明 650504;2.昆明理工大学信息化建设管理中心/昆明理工大学-曙光信息产业股份有限公司AI联合研究中心,昆明 650504

作者简介:

李亚,E-mail:59515091@qq.com

通讯作者:

朱贵富,E-mail:zhuguifu@kust.edu.cn

中图分类号:

TP391.4;S24

基金项目:

国家自然科学基金项目(61863016)


Cotton leaf disease detection based on EDW-YOLOv8
Author:
Affiliation:

1.Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650504,China;2.Kunming University of Science and Technology,Information Technology Management Center/ Kunming University of Science and Technology - Dawn Information Industry Co., Ltd.,AI Joint Research Center,Kunming 650504,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决复杂自然环境背景下棉花叶片病害检测准确率低的问题,提出一种基于改进YOLOv8n的棉花叶片病害检测模型。首先在YOLOv8n的骨干网络处加入EMA注意力机制,同时在骨干网络中的C2f模块中加入可变形卷积Deformable ConvNets v2模块,扩大感受野以加强特征提取能力。在此基础上,将损失函数CIoU替换为具有动态聚焦机制的边界框回归损失WIoU,以加快模型收敛速度,进一步提升模型性能。试验结果显示,改进后的EDW-YOLOv8模型准确率、召回率和平均精度相较于YOLOv8n分别提升了4.3、7.5和4.6百分点。结果表明,研究所提出的模型具有良好的泛化性,可以准确高效地检测出图像中棉花叶片病害目标。

    Abstract:

    Accurate detection of cotton leaf diseases in complex natural environments is essential for effectively minimizing the impact of diseases on cotton yield and quality.To address this,this study proposes a cotton leaf disease detection model based on an improved YOLOv8n.First,the EMA attention mechanism is integrated into the backbone network of YOLOv8n.Simultaneously,the deformable convolutional module,Deformable ConvNets v2,is incorporated into the C2f module within the backbone network to expand the sensory field and strengthen feature extraction capabilities.Additionally,the CIoU loss function is replaced with the WIoU bounding box regression loss,which includes a dynamic focusing mechanism to accelerate model convergence and further improve performance.The experimental results showed that the improved EDW-YOLOv8 model achieves increases of 4.3%,7.5% and 4.6% in accuracy,recall,and average precision,respectively,compared with the original YOLOv8n.These results show that the proposed model,with good generalization ability,can accurately and efficiently detect cotton leaf disease targets in images.

    参考文献
    相似文献
    引证文献
引用本文

李亚,蒋晨,王海瑞,朱贵富,胡灿.基于EDW-YOLOv8的棉花叶片病害检测[J].华中农业大学学报,2025,44(5):189-197

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-21
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-10
  • 出版日期:
文章二维码