基于改进CycleGAN的小样本玉米病害图像扩充方法
CSTR:
作者:
作者单位:

1.河南农业大学信息与管理科学学院,郑州 450002;2.新里斯本大学信息管理学院,里斯本 1070-312;3.商丘师范学院计算机与信息技术学院,商丘 476000

作者简介:

李艳玲,E-mail:lyl_lingling@163.com

通讯作者:

司海平,E-mail:pingsss@126.com
陈丽娜,E-mail:dxn1126@163.com

中图分类号:

S513;TP391.1

基金项目:

河南省科技攻关项目(252102520037);河南省重点研发专项(251111211300,231111110100,231111211300);河南省杰出外籍科学家工作室项目(GZS2024006);河南省教育厅高等学校重点项目(25A520044)


Improved CycleGAN-based method for augmenting images of few-shot maize diseases
Author:
Affiliation:

1.College of Information and Management Sciences,Henan Agricultural University, Zhengzhou 450046,China;2.NOVA Information Management School (NOVA IMS),Universidade Nova de Lisboa, Lisboa 1070-312, Portugal;3.School of Computer and Information Technology,Shangqiu Normal University,Shangqiu 476000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对玉米病害图像识别任务存在数据集获取困难、样本不足及不同类别病害样本不均衡等问题,设计一种基于改进CycleGAN(cycle-consistent adversarial networks)的图像数据增强方法。首先,使用较小感受野的卷积核优化CycleGAN网络结构,生成高质量样本图像,减少过拟合现象发生;其次,将SE(squeeze-excitation)注意力机制嵌入到生成器的残差模块中,增强CycleGAN对病害特征的提取能力,使网络更准确地捕捉小目标病害或域间差异不明显的特征。结果显示,改进后的CycleGAN相较于原始CycleGAN、DCGAN、DCGAN+和WGAN算法,生成病害图像的FID分数分别降低了43.33、32.67、24.24和19.72,GAN-train与GAN-test相较于原始CycleGAN提升了3.13、4.25百分点;采用改进的CycleGAN图像扩充方法构建玉米病害数据集,基于该数据集的玉米叶片病害识别模型准确率在3种网络架构上均得到有效提升:AlexNet提升3.90百分点,VGGNet提升4.41百分点,ResNet提升3.44百分点,在ResNet网络架构上与传统数据增强算法相比病害识别率提升5.79百分点。结果表明,改进的CycleGAN网络有效解决了玉米病害图像数据集匮乏的问题。

    Abstract:

    An improved cycle-consistent adversarial networks (CycleGAN)-based method for augmenting data of maize leaf disease images was designed to solve the difficulties in obtaining image dataset of recognizing maize diseases,insufficient samples,and imbalanced samples across different categories of diseases.Convolutional kernels with smaller receptive fields were used to optimize the structure of the CycleGAN network and generate sample images with high-quality and reduce the occurrence of overfitting.The SE (squeeze-excitation) attention mechanism was embedded into the residual module of the generator to enhance the ability of CycleGAN to extract disease features and allow the network to more accurately capture diseases with small target or features with subtle inter-domain differences.The results showed that the improved CycleGAN reduced the frechet inception distance (FID) value of generated disease images by 43.33,32.67,24.24,and 19.72 compared with the original CycleGAN,DCGAN,DCGAN+,and WGAN algorithms. GAN-train and GAN-test increased by 3.13 and 4.25 percentage points compared to that in the original CycleGAN.The improved CycleGAN-based method for augmenting data was used to construct a dataset of maize diseases,and the accuracy of recognizing the maize leaf diseases based on this dataset was significantly improved on three network architectures.AlexNet,VGGNet,and ResNet increased by 3.90,4.41,and 3.44 percentage points,respectively.Compared with traditional data augmentation algorithms,the disease recognition rate of ResNet network architecture increased by 5.79 percentage points.It is indicated that the improved CycleGAN network effectively solves the problem of insufficient image dataset of maize diseases.

    参考文献
    相似文献
    引证文献
引用本文

李艳玲,张博翔,李飞涛,Bacao Fernando,司海平,陈丽娜.基于改进CycleGAN的小样本玉米病害图像扩充方法[J].华中农业大学学报,2025,44(5):198-207

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-22
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-10
  • 出版日期:
文章二维码