基于改进YOLOv7的复杂环境下拖拉机驾驶员面部检测
DOI:
CSTR:
作者:
作者单位:

华中农业大学工学院

作者简介:

通讯作者:

中图分类号:

基金项目:

拖拉机驾驶员下肢生物力学动态响应及踏板操纵舒适性评价方法


Facial object detection for tractor drivers in complex environments based on improved YOLOv7
Author:
Affiliation:

Fund Project:

Research on the biomechanical dynamic response of tractor drivers"" lower limbs and evaluation method of the pedal manipulation comfort

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    拖拉机驾驶员状态监测是现代农机安全监理系统中的关键环节,而面部定位与检测是对驾驶员进行状态监测的前提。现有面部检测算法多针对汽车驾驶员,在沟壑纵横的农田中无法准确分割背景,检测精度较低。为此,本研究基于YOLOv7算法,提出了一种精度高、泛化性强的驾驶员面部小目标检测方法。首先,构建改进空间金字塔池化模块,有效聚合低频全局信息与高频局部信息;其次,采用跨级部分网络模块,提高算法的计算效益;最后,调整检测层结构,构建了全新检测头SC_C_detect,提高小目标特征提取能力。消融试验及对比试验结果表明,改进后的算法单张图片检测时间为7.8 ms,AP0.5为97.29%,AP0.5:0.95为69.45%,优于Faster-RCNN、YOLOv5l、YOLOv8l等目标检测算法。在拖拉机不同振动水平下开展泛化性试验发现,改进之后,面部小目标检测模型的背景误差与定位误差均有所降低,不同振动水平下,均具有较高的检测精度,说明模型具有良好的泛化性能。相关研究可为复杂农业作业环境下拖拉机驾驶员健康状况评估与主动安全预警提供技术支撑。

    Abstract:

    To address the issues of facial small target false detection and low detection accuracy caused by vibration and background occlusion for tractor drivers in complex agricultural environments, this study proposes a facial small target detection method for tractor drivers based on improved YOLOv7, termed YOLO-SOD. Firstly, in the neck network, the improved Spatial Pyramid Pooling module AS_SPPFCSPC is utilized to replace SPPCSPC, effectively aggregating low-frequency global information with high-frequency local information to enhance the accuracy of facial localization for drivers. Secondly, the Cross-Level Partial Network module VoVGSDCSP is employed to replace the E-ELAN module in the neck network, achieving higher computational efficiency. Finally, the 20 pixel × 20 pixel large target detection layer P5 is removed, and a new 160 pixel × 160 pixel small target detection layer P2 is added to enhance the feature extraction capability for small targets. Additionally, a new detection head SC_C_detect is introduced to improve the computational efficiency of the model. Experimental results demonstrate that the improved algorithm achieves a single-image detection time of 7.8 ms, with AP0.5 at 97.29% and AP0.5:0.95 at 69.45%. Compared to the baseline model, there is an improvement of 2.49 and 6.83 percentage points respectively. Compared to current mainstream object detection networks Faster-RCNN, YOLOv5l, and YOLOv8l, the AP0.5 is increased by 6.79, 3.99, and 0.59 percentage points respectively, with model sizes reduced by 106.003, 15.956, and 11.346M. The improved facial small target detection algorithm exhibits high detection accuracy and inference speed, providing technical support for fatigue monitoring and safety warning systems for tractor drivers. Keywords: tractor; driver; facial detection; small target detection; YOLOv7.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-22
  • 最后修改日期:2025-04-05
  • 录用日期:2025-04-07
  • 在线发布日期:
  • 出版日期:
文章二维码