EMD-YOLO:基于YOLOv8n改进的轻量化作物叶部病害检测算法
DOI:
CSTR:
作者:
作者单位:

河南农业大学信息与管理科学学院

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

河南省科技攻关项目(242102521027);河南省科技研发计划联合基金项目(222301420113);


EMD-YOLO:An Improved Lightweight Detection Method for Crop Leaf Diseases based on YOLOv8n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为准确、快速地识别作物叶部病害,降低手工诊断成本,减少叶部病害对作物生长过程与产量的危害,基于YOLOv8n提出一种新型轻量级作物叶部病害检测算法EMD-YOLO。该算法结合多尺度空洞注意力MSDA、EffectiveSE注意力机制、DySample上采样以及Wise-IoU损失函数。其中,多尺度空洞注意力MSDA结合多尺度空间卷积与注意力机制,提高多尺度特征提取效率,EffectiveSE强化特征选择,提升模型表示性能;DySample上采样保留重要特征,提高特征图分辨率和检测性能;Wise-IoU损失函数优化交并比(IoU)计算方式,提升模型定位精度。结果显示,EMD-YOLO较于基线模型YOLOv8n,精确度和平均精度均值分别提高3百分点和3.6百分点,参数量和权重分别降低0.8M和1.4 MB。结果表明,EMD-YOLO的精确度达到96.3%,mAP@0.5达到92.8%,模型权重仅有4.85MB,且泛化性良好,适用于移动端农作物叶部病害检测设备。

    Abstract:

    This study proposed a novel lightweight crop leaf disease detection algorithm, EMD-YOLO, based on YOLOv8n, aimed at accurately and rapidly identifying diseases, reducing manual diagnostic costs, and minimizing the impact of leaf diseases on crop production and quality. The algorithm integrates the multi-scale dilated attention (MSDA), EffectiveSE attention mechanism, DySample upsampling, and Wise-IoU loss function. MSDA combines multi-scale spatial convolution with attention mechanisms to improve multi-scale feature efficiency; EffectiveSE strengthens feature selection, enhancing the model’s representational performance; DySample upsampling preserves important features, enhancing feature map resolution and detection performance; Wise-IoU loss function optimizes Intersection over Union (IoU) computation, improving model localization accuracy. Experiment results showed that EMD-YOLO outperformed the baseline model YOLOv8n, achieving improvements of 3% in precision and 3.6% in mean Average Precision (mAP), with reductions of 0.8M in parameters and 1.4MB in weights, while demonstrating good generalization and suitability for mobile crop leaf disease detection devices.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-28
  • 最后修改日期:2025-04-11
  • 录用日期:2025-04-11
  • 在线发布日期:
  • 出版日期:
文章二维码