基于优化MobileViT模型的轻量化田间杂草识别
DOI:
CSTR:
作者:
作者单位:

昆明理工大学信息工程与自动化学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61863016)


Lightweight field weed identification based on optimized mobilevit model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对农业环境中杂草与作物幼苗的识别挑战,本研究提出了一种基于优化MobileViT模型的轻量化方法旨在提高识别的精度和实时性。本研究对MobileViT模型进行了深入分析,首先引入SimAM注意力机制,其无参数和基于能量函数的设计,使得它在保持轻量级的同时,能够增强模型对特征的注意力能力。其次使用SCConv卷积模块减少卷积神经网络中特征的空间和通道冗余来降低计算成本和模型存储,同时提高卷积模块性能。提出联合使用Label Smoothing Loss和Cross Entropy Loss的损失函数策略,旨在提升模型的泛化性能,降低过拟合风险,并加速模型的收敛过程。为评估所提出模型MobileViT-SS的性能,本研究选取了12种田间常见作物幼苗与杂草图像作为训练数据集,对这些图像进行了模型训练。实验结果证明了本方法的有效性,其平均识别准确率达到了95.91%,精确度为95.97%,召回率为95.46%,F1分数为95.69%。这些指标均优于当前广泛使用的深度神经网络模型,如VGG-16、ResNet-18、和MobileNetv3。本研究提出的方法能够精准、快速地区分多种形态相似的杂草与作物幼苗,为相似作物田间杂草识别提供技术参考。

    Abstract:

    Aiming at the challenge of identifying weeds and crop seedlings in agricultural environment, this study proposed a lightweight method based on optimized MobileViT model to improve the accuracy and real-time recognition.This study conducts an in-depth analysis of the MobileViT model, introducing the SimAM attention mechanism. Its parameter-free and energy function-based design enhances the model's feature attention while maintaining a lightweight.Secondly, SCConv convolutional module is used to reduce the space and channel redundancy of features in the convolutional neural network to reduce the computational cost and model storage, and improve the performance of the convolutional module. A Loss function strategy combining Label Smoothing Loss and Cross Entropy Loss is adopted to improve the generalization performance of the model, reduce the risk of overfitting, and accelerate the convergence process of the model. In order to evaluate the performance of the proposed model MobileViT-SS, 12 common crop seedling and weed images were selected as the training data set, and the model was trained on these images. The experimental results show that the method is effective. The average recognition accuracy is 95.91%, the precision is 95.97%, the recall rate is 95.46%, and the F1 score is 95.69%. These indicators are superior to current widely used deep neural network models such as VGG-16, ResNet-18, and MobileNetv3. The method proposed in this study can accurately and quickly distinguish a variety of morphologically similar weeds and crop seedlings, and provide technical reference for weed identification in similar crops.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-24
  • 最后修改日期:2025-04-18
  • 录用日期:2025-05-06
  • 在线发布日期:
  • 出版日期:
文章二维码